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Abstract In order to reduce the security risk of a commercial aircraft, passengers are not allowed to take certain items in 

their carry-on baggage. For this reason, human operators are trained to detect prohibited items using a manually controlled 

baggage screening process. In this paper, we propose the use of an automated method based on multiple X-ray views to 

recognize certain regular objects with highly defined shapes and sizes. The method consists of two steps: ‘monocular 

analysis’, to obtain possible detections in each view of a sequence, and ‘multiple view analysis’, to recognize the objects of 

interest using matchings in all views. The search for matching candidates is efficiently performed using a lookup table that 

is computed off-line. In order to illustrate the effectiveness of the proposed method, experimental results on recognizing 

regular objects clips, springs and razor blades in pen cases are shown achieving high precision and recall (Pr = 95.7% , 

Re = 92.5%) for 120 objects. We believe that it would be possible to design an automated aid in a target detection task using 

the proposed algorithm. 
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1. Introduction 

Baggage inspection using X-ray screening is a 

priority task that reduces the risk of crime, terrorist 

attacks and propagation of pests and diseases [42]. 

Security and safety screening with X-ray scanners 

has become an important process in public spaces 

and at border checkpoints [30]. However, inspection 

is a complex task because threat items are very 

difficult to detect when placed in closely packed 

bags, occluded by other objects, or rotated, thus 

presenting an unrecognizable view [5]. Manual 

detection of threat items by human inspectors is 

extremely demanding [34]. It is tedious because very 

few bags actually contain threat items, and it is 

stressful because the work of identifying a wide 

range of objects, shapes and substances (metals, 

organic and inorganic substances) takes a great deal 

of concentration. In addition, human inspectors 

receive only minimal technological support.  

Furthermore, during rush hours, they have only a few 

seconds to decide whether or not a bag contains a 

threat  item  [4].  Since  each  operator  must   screen 
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many bags, the likelihood of human error becomes 

considerable over a long period of time even with 

intensive training. The literature suggests that 

detection performance is only about 8090%  [22]. 

In baggage inspection, automated X-ray testing 

remains an open question due to: i) loss of generality, 

which means that approaches developed for one task 

may not transfer well to another; ii) deficient 

detection accuracy, which means that there is a 

fundamental tradeoff between false alarms and 

missed detections; iii) limited robustness given that 

requirements for the use of a method are often met 

for simple structures only; and iv) low adaptiveness 

in that it may be very difficult to accommodate an 

automated system to design modifications or 

different specimens. 

Before 9/11, the X-ray analysis of luggage mainly 

focused on capturing the images of their content: the 

reader can find in [26] an interesting analysis carried 

out in 1989 of several aircraft attacks around the 

world, and the existing technologies to detect 

terrorist threats based on Thermal-Neutron 

Activation (TNA), Fast-Neutron Activation (FNA) 

and dual energy X-rays (used in medicine since the 

early 70s). In the 90s, Explosive Detection Systems 

(EDS) were developed based on X-ray imaging [27], 

and computed tomography through elastic scatter X-

ray (comparing the structure of irradiated material, 

against stored reference   spectra for explosives  and 



 
Fig. 1: X-ray images of a backpack from different points of view containing a handgun. 

 

drugs) [36]. All these works were concentrated on 

image acquisition and simple image processing; 

however, they lacked advanced image analysis to 

improve detection performance. Nevertheless, the 

9/11 attacks increased the security measures taken at 

airports, which in turn stimulated the interest of the 

scientific community in the research of areas related 

to security using advanced computational 

techniques. Over the last decade, the main 

contributions were: analysis of human inspection 

[41], pseudo-coloring of X-ray images [1, 6], 

enhancement and segmentation of X-ray images [35] 

and detection of threatening items in X-ray images, 

based on texture features (detecting a 9mm Colt 

Beretta automatic (machine) pistol) [29], neural 

networks and fuzzy rules (yielding about 80% of 

performance) [12], and SVM classifier (detecting 

guns in real time) [28]. 

Three-dimensional (3D) recognition from two-

dimensional (2D) images is a very complex task due 

to the infinite number of points of views and different 

image acquisition conditions [31]. An example is 

illustrated in Fig. 1 where a handgun is very difficult 

to recognize in the first view. Nevertheless, 

automated recognition has been possible in certain 

cases through seminal works dedicated to obtaining 

highly discriminative and local invariant features 

related to illumination factors and local geometric 

constraints (see for example [23] for a good review 

and evaluation). In such cases, recognition of a test 

object can be performed by matching its invariant 

features with the features of a model. 

There are some contributions in computer vision 

for X-ray testing such as applications on inspection 

of castings, welds, food, cargos and baggage 

screening [17]. For this work, it is very interesting to 

review the advances in baggage screening that have 

taken place over the course of this decade. They can 

be summarized as follows: Some approaches attempt 

to recognize objects using a single view of mono-

energy X-ray images (e.g., the adapted implicit shape 

model based on visual codebooks [33]) and dual-

energy X-ray images (e.g., Gabor texture features 

[38], bag of words based on SURF features [38] and  

pseudo-color, texture, edge and shape features [47]). 

More complex approaches that deal with multiple X-

ray images have been developed as well. In the case 

of mono-energy imaging, see for example the 

recognition of regular objects using data association 

in [18, 16, 19] and active vision [32] where a second-

best view is estimated. Other methods perform a 

synthesis of new X-ray images obtained from Kinetic 



Depth Effect X-ray (KDEX) images based on SIFT 

features in order to increase detection performance 

[2]. In the case of dual-energy imaging (with multiple 

views), see the use of visual vocabularies and SVM 

classifiers in [11]. Progress also has been made in the 

area of computed tomography. For example, in order 

to improve the quality of CT images, metal artifact 

reduction and de-noising [24] techniques were 

suggested. Many methods based on 3D features for 

3D object recognition have been developed (see, for 

example, RIFT and SIFT descriptors [9], 3D Visual 

Cortex Modeling  3D Zernike descriptors and 

histogram of shape index [14]). There are 

contributions using known recognition techniques 

(see, for example, bag of words [10] and random 

forest [25]). As we can see, the progress in automated 

baggage inspection is modest and still very limited 

compared to what is needed because X-ray screening 

systems are still being manipulated by human 

inspectors. 

In baggage screening, the use of multiple view 

information yields a significant improvement in 

performance as certain items are difficult to 

recognize using only one viewpoint. As reported in a 

study that measures the human performance in 

baggage screening [40], (human) multiple view X-

ray inspection leads to a higher detection 

performance of prohibited items under difficult 

conditions, however, there are no significant 

differences between the detection performance 

(single vs. multiple view) for difficult-easy multiple 

view conditions, i.e., two difficult or two easy views 

are redundant. We observed that for intricate 

conditions, multiple view X-ray inspection is 

required. 

Even though several scientific communities are 

exploring a range of research directions, adopting 

very different principles, and developing a wide 

variety of algorithms for very different applications, 

automated recognition in baggage inspection is far 

from being perfected due to: i)  the large variability 

of the appearance and shape of the test objects both 

between and within categories (see Fig. 2); ii) the 

large variability in terms of object sample depending 

on its points of view (e.g., top view and frontal view 

of a razor blade are very different as shown in Fig. 

3); and iii) the appearance of a test object can vary 

due to the conditions of (self)occlusion, noise and 

acquisition (see Fig. 4). 

 

 

 
Fig. 2: Large variability in the appearance in guns 

and knives. 

 

 
Fig. 3: Large variability within a razor blade: some 

X-ray images of the same blade in different poses. 

 

 
Fig. 4: Typical problems in recognition tasks: a) 

occlusion, b) self-occlusion, c) noise and d) low-

contrast. 

 

In our paper, we would like to make a contribution 

to the last two mentioned problems, in which object 

recognition plays a crucial role. We have based our 

proposal on three potent ideas: i) detection windows, 

as they obtain a high performance in recognition and 

detection problems in computer vision;   ii) multiple 

views, as they can be an effective option for 

examining complex objects where uncertainty by 

analyzing only one angle of perspective can lead to 

misinterpretation; and iii) efficient visual search, 

given the speeds involved when searching for 

objects. We believe that our framework is a useful 

alternative for recognizing objects because it is based 



on an efficient search in multiple views using 

corresponding multiple view windows. 

In this paper, we propose a framework based on 

computer vision and machine learning techniques in 

order to deal with the problem of 3D recognition. We 

believe that this solution also allows us to propose a 

general and adaptive methodology for X-ray testing 

that can be tested in several detection problems, such 

as the characterization of materials, and airport 

security. Additionally, we think that it would be 

possible to design an automated aid in a target 

detection task using the proposed algorithm. 

The rest of the paper is organized as follows: the 

proposed approach (Section 2), the results obtained 

in several experiments (Section 3), and some 

concluding remarks and suggestions for future 

research (Section 4). A preliminary version of this 

paper was published in [21]. 

 

 

2. Proposed Method 

The strategy of our method is illustrated in Fig. 5. 

The target object, e.g., a backpack, is irradiated from 

different viewpoints (Image Acquisition). The 

keyidea of the method is to detect in each image of 

the sequence individual potential objects (Monocular 

Detection) and corroborate these detections across 

the multiple views. Thus, a Matching in 2D and a 3D 

Analysis is performed using geometric constraints in 

order to eliminate false monocular detections. That 

means, a monocular detection that does not find any 

correspondence will be filtered out in the next steps. 

Finally, an appearance analysis is done (Final 

Detection). 

In this section, we explain in further detail the 

proposed method. The explanation consists of two 

main stages: off-line and on-line. In the first stage we 

establish the appearance model and the geometric 

model, whereas in the second stage we follow the 

above-mentioned strategy. 

 

2.1 Off-line stage 

The first stage, performed off-line, consists of two 

main steps: i) learning a model that is used for the 

recognition and ii) estimation of a multiple view 

geometric model that is used for data association. 

 

 

2.1.1 Learning 

In this step, we learn a classifier h to recognize parts 

of the objects that we are attempting to detect. It is 

assumed that there are C + 1 classes (labeled as ‘0’ 

for non-object class, and ‘1’, ‘2’, …‘C’ for C 

different objects). Images are taken of representative 

objects of each class from different points of view. In 

order to model the details of the objects from 

different poses, several keypoints per image are 

detected, and for each keypoint a descriptor d is 

extracted using, for example, LBP, SIFT, HOG, and 

SURF, among others [23]. In this supervised 

approach, each descriptor d is manually labeled 

according to its corresponding class c  { 0, 1, …C}. 

Given the training data (dt, ct), for t =1, …, N, where 

N is the total number of descriptors extracted in all 

training images, a classifier h is designed which maps 

dt to their classification label ct, thus, h(dt) should be 

ct. This classifier will be used in the on-line stage by 

monocular and multiple-view analysis. 

 

2.1.2 Geometry 

Our strategy deals with multiple monocular 

detections in multiple views. In this problem of data 

association, the aim is to find the correct 

correspondence among different views. For this 

reason, we use multiple view geometric constraints 

to reduce the number of matching candidates 

between monocular detections. For an image 

sequence with n views I1…In, the fundamental 

matrices {Fij} between consecutive frames Ii and 

Ij=i+1 are computed for i = 1, …, n-1. In our approach, 

the fundamental matrix Fij of the epipolar geometry 

(see Fig. 6) is calculated from projection matrices Pi 

and Pj that can be estimated using calibration or 

bundle adjustment algorithms [17]. 

The geometric constraints are expressed in 

homogeneous coordinates. Therefore, given a point 

mi = [xi  yi  1]T in  image Ii,  a  corresponding point 

mj = [xj  yj  1]T in image Ij must fulfill: i) epipolar 

constraint:    mj  must  lie   near  the  epipolar   line   

l = Fijmi, and ii) location constraint: for small 

variations of the point of views between Ii and Ij, mj 

must lie near mi. Thus, a candidate mj must fulfill: 
 

|mj
TFijmi|

√l1
2 + l2

2
 < e    and    ‖mi − mj‖ < r.      (1) 



 
Fig. 5: Strategy of the proposed method. 

 

 
Fig. 6: Epipolar Geometry: The corresponding point 

of m1 in left image is m2 in right image. They are the 

projections of the same 3D point of the key. The 

epipolar constrains says that m2 must lie on the 

epipolar line of m1, that is line l. 

 

In order to accelerate the search of candidates, we 

propose the use of a lookup table as follows: Points 

in images Ii and Ij are arranged in a grid format with 

rows and columns. For each grid point (x, y) of image 

Ii, we look for the grid points of image Ij that fulfill  

the equation (1), as illustrated in Fig. 7. Therefore, 

the possible corresponding points of (x, y) will be the 

set  Sxy = {(xp, yp)}p =1

q
, where   xp = X(x, y, p),   yp = 

Y(x, y, p) and q = Q(x, y) are stored (off-line) in a 

lookup table. In the on-line stage, given a point mi 

(in image Ii), the matching candidates in image Ij are 

those that lie near to Sxy, where (x, y) is the nearest 

grid point to mi. This search can be efficiently 

implemented using k-d tree structures [3]. 

In a controlled and calibrated environment, we 

can assume that the fundamental matrices are stable 

and we do not need to estimate them in each new 

image sequence, i.e., the lookup tables are constant. 

Additionally, when the relative motion of the point 

of view between consecutive frames is the same, the 

computed fundamental matrices  are constant,  i.e., 

Fij = F, and we need to store only one lookup table. 

 
Fig. 7: Given the grid point illustrated as the red point 

at (x, y), in image Ii, the set of possible corresponding 

points in image Ij can be those grid points (yellow 

points) represented by the intersection of the epipolar 

region  (blue rectangle)  and neighborhood  around 

(x, y) (orange circle with radius r centered at red 

point). The use of grid points allows us to use a 

lookup table in order to search the matching 

candidates in Ij efficiently. 

 

2.2 On-line stage 

The on-line stage is performed in order to recognize 

the objects of interest in a test image sequence of n 

images {Ii}, for i = 1, …, n. The images are acquired 

by rotation of the object being tested at  degrees (in 

our experiments we used n = 4, and  = 10°). This 

stage consisted of two main steps: monocular and 

multiple view analysis that will be described in 

further detail as follows. 

 

2.2.1 Monocular analysis 

This step is performed in each image Ii of the test 

image sequence, as illustrated in Fig. 8 in a real case. 

The whole object contained in image Ii is segmented 

from the background using threshold and 

morphological operations. SIFTkeypoints or other 

descriptors, are only extracted in the segmented 

portion. The descriptor d of each keypoint is 

classified using classifier h(d) trained in the off-line 

stage, and explained in Section 2.1.1. All keypoints 

classified  as class c, where c is the  class of  interest, 



 
 

Fig. 8: Monocular analysis for each image of the sequence, i.e., for i = 1, …, n. In this example, the class of 

interest is ‘razor blade’. 

 
 

Fig. 9: Multiple view analysis. An explanation of last step (final analysis) is illustrated in Fig. 10. 

 

with c  {1…C} are selected. As we can see in Fig. 

8 for the classification of ‘razor blade’, there are 

many keypoints misclassified. For this reason, 

neighbor keypoints are clustered in the 2D space 

using Mean Shift algorithm [7]. Only those clusters 

that have a large enough number of keypoints are 

selected. They will be called detected monocular 

keypoints. 

 

2.2.2 Multiple view analysis 

Multiple view analysis performs the recognition of 

objects of interest in three steps (see Fig. 9): i) data 

association, ii) 3D analysis, and iii) final analysis. 

The input is the detected monocular keypoints 

obtained by the mentioned monocular analysis of 

Section 2.2.1. The output is c', the assigned class for 

each detected object. 

 

 Data association: In this step, we find matchings 

for all detected monocular keypoints in all 

consecutive images Ii and Ij=i+1, for i = 1, …, n-1, as 

follows: 

o For each detected monocular keypoint in image 

Ii (located at position (xi, yi) with descriptor di), 

we seek in a dense grid of points, the nearest 

point (x, y) (see red point in Fig. 7-left) using a 

k-d tree structure. 



 
Fig. 10: Final analysis: using the geometric model, 

the reconstructed 3D points in each cluster are 

reprojected in each view (blue points). The keypoints 

that are near to the reprojected points are identified 

(red points). The descriptors of these keypoints 

(orange histograms) are classified using trained 

classifier h. The class c' of this cluster is determined 

by majority vote. In this example of n = 4 views, only 

the green cluster is represented. 

 

o We determine Sxy, the set of matching candidates 

in image Ij=i+1 arranged in a grid manner by 

reading the lookup table explained in Section 

2.1.2 (see yellow points in Fig. 7-right). 

o We look for the detected monocular keypoints in 

image Ij that are located in the neighborhood of 

Sxy, again using a k-d tree structure. They will be 

called neighbor keypoints. When no neighbor 

keypoint  is found, no match is established for 

(xi, yi). 

o From neighbor keypoints, we select that one 

(located at position (xj, yj) with descriptor dj) 

with minimum distance ||di  dj ||. In order to 

ensure the similarity between matching points, 

the distance should be less than a threshold . If 

this constraint is not satisfied, again no match is 

established for (xi, yi). 

 

 3D analysis: From each pair of matched keypoints 

(xi, yi) in image Ii and (xj, yj) in image Ij=i+1 

established in the previous step, a 3D point is 

reconstructed using the projection matrices Pi and Pj 

of our geometric model mentioned in Section 2.1.2 

(see triangulation algorithm in [17]). Similarly to the 

monocular detection approach, neighbor 3D points 

are clustered in the 3D space using Mean Shift 

algorithm [7], and only those clusters that have a 

large enough number of 3D points are selected. 

 

 Final analysis: For each selected 3D cluster, all 3D 

reconstructed points belonging to the cluster are re-

projected onto all images of the sequence using the 

projection matrices of geometric model (see Fig. 10). 

The extracted descriptors of the keypoints located 

near these re-projected points are classified 

individually using classifier h (defined in Section 

2.1.1). The cluster will be classified as class c' if there 

is a large number of keypoints individually classified 

as c', and this number represents a majority in the 

cluster. 

 

This majority vote strategy can overcome the 

problem of false monocular detections when the 

classification of the minority fails. A cluster can be 

misclassified if the part that we are trying to 

recognize is occluded by a part of another class. In 

this case, there will be keypoints in the cluster 

assigned to both classes; however, we expect that the 

majority of keypoints will be assigned to the true 

class if there are a small number of keypoints 

misclassified. 

 

3. Experiments and Results 

In our experiments, the task was to recognize three 

different classes of objects that are present in a pencil 

case (see for example a sequence in Fig. 11a). These 

classes are: ‘clips’, ‘springs’ and ‘razor blades’. We 

followed the recognition approach explained in 

Section 2. 

In the off-line stage we used a structure from a 

motion algorithm in order to estimate the projection 

matrices of each view1. Additionally, in the learning 

phase, we used only 16 training images of each class.

                                                 
1 We use in our experiments a fast implementation of 

multiple view geometry algorithms from BALU Toolbox [15]. 

 



Due to the small intra-class variation of our classes, 

this number of training images was deemed 

sufficient. The training objects were posed at 

different angles. SIFT descriptors were extracted as 

explained in [13], and a k-Nearest Neighbor (KNN) 

classifier with k = 3 neighbors was ascertained using 

the SIFT descriptors of the four classes2. Other 

descriptors (like LBP and HOG) and other classifiers 

(like SVM or KNN with other values of k) were also 

tested, although the best performance was achieved 

with the aforementioned configuration. 

In order to illustrate step by step the on-line stage, 

the recognition of a razor blade is illustrated in Fig. 

11a-d for monocular analysis and in Fig. 11e-g for 

multiple view analysis3. Other examples are 

illustrated in Fig. 12. It is worth mentioning that in 

monocular detection there are false alarms, however, 

they can be filtered out after multiple view analysis. 

The reason is because false alarms cannot be tracked 

in the sequence or because the tracked points, when 

validating the corresponding points in other views of 

the sequence, do not belong to the class of interest. 

Other results with some degree of overlap, where the 

task was the recognition of springs and clips, are 

illustrated in Fig 13. 

The performance of our method is given in terms 

of precisionrecall (Pr, Re) defined as follows [17]: 
 

                   Pr = 
TP

TP+FP
   ,   Re = 

TP

TP+FN
 (2) 

 

where, True Positive (TP) is the number of targets 

correctly classified, False Positive (FP) is the 

number of non-targets classified as targets. The false 

positives are known as ‘false alarms’ and ‘Type I 

error’, and False Negative (FN) is the number of 

targets classified as no-targets.  The false negatives 

are known as ‘Type II error’. 

On one hand, precision gives the ratio of the 

number of true positives to the number of detections 

(D = TP + FP). On the other hand, recall gives the 

ratio of the number of true positives to the number of 

existing targets, known as ‘ground truth’ (GT = TP + 

FN). Ideally, a perfect detection means all existing 

targets are correctly detected without any false 

alarms, i.e., Pr = 1 and Re =1. 

 

                                                 
2 We use in our experiments a fast implementations of SIFT and 

KNN (based on k-d tree) from VLFeat Toolbox [39]. 

a 

b 

c 

d 

e 

f 

g 

Fig. 11: Recognition of a razor blade using our 

approach. a) original sequence, b) keypoints, c) 

classified keypoints, d) detected monocular 

keypoints, e) matched keypoints, f) reprojected 3D 

points (blue) and neighbor keypoins (red), g) final 

detection. 

3 We use in our experiments a fast implementation of Mean 

Shift from PMT Toolbox [8]. 



 

 

 
 

Fig. 12: Detection of clips, springs and razor blades in the same sequence. 

 

 

 



 a    b    c    d 
 

Fig. 13: Recognition  using  our approach  in cases with some degree of overlap:  a) one spring, b) two springs, 

c) one clip, d) one clip. Each figure shows a part of one image of the whole sequence. 

 

Table 1: Recognition performance 
 

Class 
 Mono  Multi 

TP FP GT Pr Re TP FP GT Pr Re 

Clip  114 127 120 0.4730 0.9500  26 2 30 0.9286 0.8667 

Spring 263 30 300 0.8976 0.8767 71 3 75 0.9595 0.9467 

Blade 59 18 60 0.7662 0.9833 14 0 15 1.0000 0.9333 

  436 175 480 0.7136 0.9083  111 5 120 0.9569 0.9250 

 

 

 
Fig. 14: Graphic representation of Table 1. 

 

Testing experiments were carried out by 

recognizing the three mentioned classes (‘clips’, 

‘springs’ and ‘razor blades’) in 45 different 

sequences of 4 views (15 sequences for each class)4. 

The size of an individual image was 1430  900 

pixels. In these experiments there were 30 clips, 75 

springs and 15 razor blades to be recognized. A 

summary of the results using the proposed algorithm 

is presented in Table 1 and in Fig. 14, where the 

performance in the recognition of each class is 

presented in two different parts of our algorithm: 

after monocular analysis (Mono) and after multiple 

view analysis (Multi). These parts are illustrated in 

                                                 
4 The images tested in our experiments come from public 

GDXray database [20]. 

Fig. 11d and 11g respectively for a razor blade. In 

this table, ground truth (GT) is the number of existing 

objects to be recognized. In our experiments, 

precision (Pr), computed as Pr = TP / D, is 71.4% and 

95.7%  in each part; and recall  (Re),  computed  as 

Re = TP / GT, is 90.8% and 92.5% in each step. As 

we can see in Fig. 14, if we compare single versus 

multiple view detection, both precision and recall are 

incremented. Precision, however, is drastically 

incremented because our approach achieves good 

discrimination from false alarms. 

The amount of time required in our experiments 

was about 10 minutes for the off-line stage and about 

10s for testing each sequence on a Mac Mini Server 

OS X 10.10.1, processor 2.6 GHz Intel Core i7 with 

4 cores and memory of 16GB RAM 1600 MHz 

DDR3. The code of the program (implemented in 

Matlab) is available on our web site. 

 

4. Conclusions 

In this paper, we presented a new method that can be 

used to recognize certain parts of interest in complex 

objects using multiple X-ray views. The proposed 

method filters out false positives resulting from 

monocular detection performed on single views by 



matching information across multiple views. This 

step is performed efficiently using a lookup table that 

is computed off-line. In order to illustrate the 

effectiveness of the proposed method, experimental 

results on recognizing regular objects clips, springs 

and razor blades in pen cases are shown achieving 

high precision and recall (Pr = 95.7% , Re = 92.5%) 

for 120 objects. We believe that it would be possible 

to design an automated aid in a target detection task 

using the proposed algorithm. In our future work, the 

approach will be tested in more complex scenarios 

recognizing objects with a larger intra-class 

variation. 
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